

Data Masking: What You Need to Know

What You Really Need To Know Before You Begin

 A Net 2000 Ltd. White Paper

Abstract

It is often necessary to anonymize data in test and development databases in order to

protect it from inappropriate visibility. There are many things, some incredibly subtle,

which can cause problems when masking data. This paper provides a survey of the

practical issues involved in the masking of sensitive data and tells you the things you

really need to know about before getting started.

It must be noted that Net 2000 Ltd., (the authors of this paper), sell a software data

anonymization tool called Data Masker (http://www.DataMasker.com). However, as the

title states, this paper really is a generic survey of the knowledge you really need to

have before getting involved in the masking of data and there will be no further

reference to any specific software. If you wish to know more, or have any questions

about issues raised in this whitepaper please contact us.

Some keywords which may assist you in finding this document online are:

Data Sanitization, Data Sanitisation, Data Anonymization, Data Scrubbing, Data Scrambling,

Data Masking, Data Obfuscation, Data Security, Data Cleansing, Data Hiding, Data

Protection Act 1998, Hide Data, Disguise Data, Sanitize Data, Sanitise Data, Gramm-Leach-

Bliley Act (GLBA), Data Privacy, Directive 95/46/EC of the European Parliament, Health

Insurance Portability and Accountability Act (HIPAA), GDPR, General Data Protection

Regulation

 Net 2000 Ltd.

 http://www.Net2000Ltd.com

 Info@Net2000Ltd.com

http://www.datamasker.com/
http://www.net2000ltd.com/
mailto:Info@Net2000Ltd.com

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - ii - http://www.DataMasker.com

Table of Contents

Disclaimer ... 1

What Does Data Masking Mean? ... 2

Why Mask Data? ... 3

Legal Requirements .. 3

Loss of Confidence And Public Relations Disasters .. 3

Malicious Exposure .. 3

Accidental Exposure ... 3

What Data To Mask .. 4

Use A Variety Of Masking Routines .. 4

Light Masking on a Bug-Fix or Fire-Fighting Database .. 4

Medium Masking on Internal Development Databases .. 4

Thorough Masking on an Outsourced Database ... 4

Data Masking Architectures ... 5

On the Fly, Server-To-Server, Data Masking Architectures .. 5

In-Situ Data Masking Architectures ... 5

Data Masking Techniques ... 6

Substitution ... 6

Shuffling ... 6

Number and Date Variance ... 7

Encryption ... 7

Nulling Out/Truncating ... 8

Masking Out Data ... 8

Row Internal Synchronization .. 8

Table Internal Synchronization ... 9

Table-To-Table Synchronization .. 10

Table-To-Table Synchronization On Primary Key ... 11

Table-To-Table Synchronization Via Third Table ... 11

Synchronizing Between Different Datatypes .. 12

Cross Schema Synchronization ... 13

Cross Database Synchronization ... 13

Cross Server Synchronization ... 13

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - iii - http://www.DataMasker.com

Cross Platform Server Synchronization .. 13

Selective Masking: Ability to Apply a WHERE Clause... 14

Selective Masking: Ability to Apply Sampling .. 14

User Defined SQL Commands ... 14

Flat File Masking .. 14

Multi-threading and Internal Scheduling .. 15

Rule Parallelism .. 15

Sequences Within the Parallel Runs ... 15

Data Masking Issues ... 16

Where Clause Skips .. 16

Table-To-Table Skips ... 16

Cleaning up the Data ... 17

Isolated Case Phenomena.. 17

Relevant Data .. 17

Intelligent Keys ... 17

Free Format Data .. 18

Field Overflow .. 18

Sparse Data ... 18

Percentage Operations... 18

Sequence Generation... 19

Consistent Masking ... 19

Aggregate Information .. 19

Meta Information .. 19

Granularity .. 19

Distribution Preservation .. 20

Special Cases .. 20

User Defined Fields .. 20

Speed ... 20

Repeatability ... 21

Summary ... 22

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 1 - http://www.DataMasker.com

Disclaimer

The contents of this document are for general information purposes only and

are not intended to constitute professional advice of any description. The

provision of this information does not create a business or professional services

relationship. Net 2000 Ltd. makes no claim, representation, promise,

undertaking or warranty regarding the accuracy, timeliness, completeness,

suitability or fitness for any purpose, merchantability, up-to-datedness or any

other aspect of the information contained in this paper, all of which is provided

"as is" and "as available" without any warranty of any kind.

The information content of databases varies widely and each has a unique

configuration. Readers should take appropriate professional advice prior to

performing any actions.

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 2 - http://www.DataMasker.com

Data Masking: What You Need to Know

What Does Data Masking Mean?

Data Masking is the replacement of existing sensitive information in test or

development databases with information that looks real but is of no use to anyone

who might wish to misuse it. In general, the users of the test, development or training

databases do not need to see the actual information as long as what they are looking at

looks real and is consistent.

The ability of test and development teams to use masked data is not universally true.

The What Data To Mask section in this paper addresses the issues associated with this

and presents options which can be used to mitigate the data exposure risk.

It is important to be aware that data masking is appropriate to more than just personal

details – sometimes business confidential information is appropriate for masking as

well. For example, it may be desirable to prevent quarterly sales figures for some

products being present in an outsourced test database.

Data masking is not the same thing as restricting the visibility of information in

production databases from people who are not authorized to see it. In that situation,

the data is actually present in the database and is simply not visible to the

unauthorized. There are many good and justifiable reasons for taking this approach in

a production system, but adopting a “data is present but hidden” approach to the

protection of data in test and development databases is a recipe for trouble. The reason

is that strict controls are in place in production databases and these can present a

carefully managed view. Test and development systems are different. Typically, they

are an environment in which access is usually much wider. Information is visible to

more people and those people often have greater privileges and low level access.

From a data visibility standpoint, a test or dev system in which the data is present but

hidden is a system which sooner or later will expose its data.

In general, a reasonable security assumption is that the more people who have access

to the information, the greater the inherent risk of the data being compromised.

The modification of the existing data in such a way as to remove all identifiable

distinguishing characteristics yet still usable as a test system can provide a valuable

layer of security for test and development databases.

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 3 - http://www.DataMasker.com

Why Mask Data?

Legal Requirements

The regulatory environment surrounding the duties and obligations of a data holder to

protect the information they maintain are becoming increasingly rigorous in just about

every legal jurisdiction. It is a pretty safe assumption that the standards for the

security and maintenance of data will become increasingly strict in the future.

Loss of Confidence And Public Relations Disasters

It can reasonably be said in most locations, that if a data escape happens at your

organization, then the formal legal sanctions applied by governmental bodies is not

the only problem you will be facing. Possibly it may not even be the biggest of your

immediate worries.

Inappropriate data exposure, whether accidental or malicious, can have devastating

consequences. Often the costs of such an event, both actual and un-quantifiable can

far exceed any fines levied for the violation of the rules. For example, what will it cost

the organization if potential customers are not willing to provide sensitive information

to your company because they read an article about a data escape in the newspaper.

Dealing with the public relations aftermath of seeing the companies name in the press

will not be cheap. It also does not take much imagination to realize that senior

management are not going to be happy about having to give a press conference to re-

assure the public. The public relations costs of a data escape usually far exceed the

sanctions levied by governmental organizations.

Malicious Exposure

Most people think the major risk to the information they hold is external entities (and

organized syndicates) out to break in and steal the data. The assumption then follows

that protecting the network and firewalls is the appropriate and sufficient response.

There is no denying that such protection is necessary – however it has been shown

that in many cases the data is stolen by malicious insiders who have been granted

access to the data. No firewall can keep an insider from acquiring data under such

circumstances. However, by reducing the number of databases with unmasked

information, the overall risk of exposure is mitigated. The external hackers, if they get

through the network security, will have far fewer useable targets and a far greater

proportion of the inside personnel will have no access to the real data.

Accidental Exposure

The risk of accidental exposure of information is often neglected when considering

the security risks associated with real test data. Often it is thought that “there is no

point in masking the test data because everybody has access to production anyways”.

Not so, the risks associated with an accidental exposure of the data remain. Often just

masking the most sensitive information (credit card numbers, customer email

addresses etc) is enough to somewhat mitigate the damage associated with accidental

exposure and the masked databases remain just as functional.

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 4 - http://www.DataMasker.com

What Data To Mask

Use A Variety Of Masking Routines

One of the common mis-perceptions regarding data masking is the idea that “our data

is not suitable for anonymization because the real information is needed in some of

the test databases”. The actual data may well be required in one database – but it is

unlikely to be needed in every test database. A reasonable course of action is to have a

variety of masking routines for different purposes. These masking routines would be

tuned to the degree of exposure of the data and the amount of control maintained.

Light Masking on a Bug-Fix or Fire-Fighting Database

One of the major issues associated with data masking (see the Data Masking Issues

section below) is that the masking process can sometimes “tidy up” the data. In order

to be effective, a Bug-Fix or Fire-Fighting database needs to have as few changes as

possible. However, there are a number of items which can be safely masked - even in

a Bug-Fix database. Things like bank account or credit card numbers, unless they are

used as join keys, can usually be masked to provide some protection. In general, any

opaque information which is only meaningful to an external organization can be

masked in these circumstances.

Medium Masking on Internal Development Databases

Databases which are used by internal development, test and training staff and have no

visibility outside the organization should probably receive a medium level of

masking. In general, it is unwise to assume that “since everybody with access to the

test databases also has access to the production database there is no need to mask the

data”. Accidents happen, and you will need to protect yourself from that. The

Accidental Exposure section above discusses this issue in detail. Masking the most

common personally identifiable information in these databases as well as the sensitive

details such as bank account numbers is usually sufficient.

Thorough Masking on an Outsourced Database

If operational control of the test and development databases will be handed over to a

third party then a strong case for a through anonymization of the contents can be

made. A database going offsite to an outsourced development team might have an

extremely thorough masking applied and only the real information absolutely

necessary to enable the remote personnel to perform their function would be present.

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 5 - http://www.DataMasker.com

Data Masking Architectures

Fundamentally, there are two basic types of architectures which are used in the design

of data masking software.

On the Fly, Server-To-Server, Data Masking Architectures

In this architecture the data does not exist in the target database prior to masking. The

anonymization rules are applied as part of the process of moving the data from the

source to the target. Often this type of masking is integrated into the cloning process

which creates the target database.

Advantages

 The data is never present in an unmasked form in the target database.

Disadvantages

 Any errors in the process necessarily interrupt the transfer of the data.

 The ability to mask data after the transfer has completed can be

troublesome. This might happen in cases where the masked target

database has been built and it is subsequently decided that a specific

column of information really needs to be masked. In this case, the

masking software needs to have In-Situ masking capabilities (see

below) or the entire clone and masking operation will need to be

repeated.

 The ability to use alternative, perhaps preferred, tools to perform the

cloning operation is impacted.

In-Situ Data Masking Architectures

In this style, the clone of the database to be masked is created by other means and the

software simply operates on the cloned database. There are two types of in-situ

masking: masking rules which are executed and controlled as a standalone entity on

the target and data masking rules which are controlled by a different system which

then connects to the target and controls the execution of the rules.

Advantages

 It is possible to apply additional masking operations at any time.

 The masking operations are separate from the copy process so existing

cloning solutions can be used and the data masking rules are possibly

simpler to maintain.

Disadvantages

 The data is present in an unmasked state in the target database and

hence additional security measures will be required during that time.

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 6 - http://www.DataMasker.com

Data Masking Techniques

Substitution

This technique consists of randomly replacing the contents of a column of data with

information that looks similar but is completely unrelated to the real details. For

example, the surnames in a customer database could be sanitized by replacing the real

last names with surnames drawn from a largish random list.

Substitution is very effective in terms of preserving the look and feel of the existing

data. The downside is that a largish store of substitutable information must be

available for each column to be substituted. For example, to sanitize surnames by

substitution, a list of random last names must be available. Then to sanitize telephone

numbers, a list of phone numbers must be available. Frequently, the ability to generate

known invalid data (credit card numbers that will pass the checksum tests but never

work) is a nice-to-have feature.

Substitution data can sometimes be very hard to find in large quantities - however any

data masking software should contain datasets of commonly required items. When

evaluating data masking software the size, scope and variety of the datasets should be

considered. Another useful feature to look for is the ability to build your own custom

datasets and add them for use in the masking rules.

Shuffling

Shuffling is similar to substitution except that the substitution data is derived from the

column itself. Essentially the data in a column is randomly moved between rows until

there is no longer any reasonable correlation with the remaining information in the

row.

There is a certain danger in the shuffling technique. It does not prevent people from

asking questions like “I wonder if so-and-so is on the supplier list?” In other words,

the original data is still present and sometimes meaningful questions can still be asked

of it. Another consideration is the algorithm used to shuffle the data. If the shuffling

method can be determined, then the data can be easily “un-shuffled”. For example, if

the shuffle algorithm simply ran down the table swapping the column data in between

every group of two rows it would not take much work from an interested party to

revert things to their un-shuffled state.

Shuffling is rarely effective when used on small amounts of data. For example, if

there are only 5 rows in a table it probably will not be too difficult to figure out which

of the shuffled data really belongs to which row. On the other hand, if a column of

numeric data is shuffled, the sum and average of the column still work out to the same

amount. This can sometimes be useful.

Shuffle rules are best used on large tables and leave the look and feel of the data

intact. They are fast, but great care must be taken to use a sophisticated algorithm to

randomise the shuffling of the rows.

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 7 - http://www.DataMasker.com

Number and Date Variance

The Number Variance technique is useful on numeric or date data. Simply put, the

algorithm involves modifying each number or date value in a column by some random

percentage of its real value. This technique has the nice advantage of providing a

reasonable disguise for the data while still keeping the range and distribution of values

in the column to within existing limits. For example, a column of salary details might

have a random variance of ±10% placed on it. Some values would be higher, some

lower but all would be not too far from their original range. Date fields are also a

good candidate for variance techniques. Birth dates, for example, could be varied with

in an arbitrary range of ± 120 days which effectively disguises the personally

identifiable information while still preserving the distribution.

The variance technique can prevent attempts to discover true records using known

date data or the exposure of sensitive numeric or date data.

Encryption

This technique offers the option of leaving the data in place and visible to those with

the appropriate key while remaining effectively useless to anybody without the key.

This would seem to be a very good option – yet, for anonymous test databases, it is

one of the least useful techniques.

The advantage of having the real data available to anybody with the key – is actually a

major disadvantage in a test or development database. The “optional” visibility

provides no major advantage in a test system and the encryption password only needs

to escape once and all of the data is compromised. Of course, you can change the key

and regenerate the test instances – but outsourced, stored or saved copies of the data

are all still available under the old password.

Encryption also destroys the formatting and look and feel of the data. Encrypted data

rarely looks meaningful, in fact, it usually looks like binary data. This sometimes

leads to character set issues when manipulating encrypted varchar fields. Certain

types of encryption impose constraints on the data format as well. In effect, this

means that the fields must be extended with a suitable padding character which must

then be stripped off at decryption time.

The strength of the encryption is also an issue. Some encryption is more secure than

others. According to the experts, most encryption systems can be broken – it is just a

matter of time and effort. In other words, not very much will keep the national

security agencies of largish countries from reading your files should they choose to do

so. This may not be a big worry if the requirement is to protect proprietary business

information. Never, ever, use a simplistic encryption scheme designed by amateurs.

For example, one in which the letter ‘A’ is replaced by ‘X’ and the letter ‘B’ by ‘M’

etc. is trivially easy to decrypt based on letter frequency probabilities. In fact, first

year computer science students are often asked to write such programs as

assignments.

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 8 - http://www.DataMasker.com

Nulling Out/Truncating

Simply deleting a column of data by replacing it with NULL values is an effective

way of ensuring that it is not inappropriately visible in test environments.

Unfortunately it is also one of the least desirable options from a test database

standpoint. Usually the test teams need to work on the data or at least a realistic

approximation of it. For example, it is very hard to write and test customer account

maintenance forms if the customer name, address and contact details are all NULL

values. NULL’ing or truncating data is useful in circumstances where the data is

simply not required, but is rarely useful as the entire data sanitization strategy.

Masking Out Data

Masking data, besides being the generic term for the process of data anonymization,

means replacing certain fields with a mask character (such as an X). This effectively

disguises the data content while preserving the same formatting on front end screens

and reports. For example, a column of credit card numbers might look like:

4346 6454 0020 5379

4493 9238 7315 5787

4297 8296 7496 8724

and after the masking operation the information would appear as:

4346 XXXX XXXX 5379

4493 XXXX XXXX 5787

4297 XXXX XXXX 8724

The masking characters effectively remove much of the sensitive content from the

record while still preserving the look and feel. Take care to ensure that enough of the

data is masked to preserve security. It would not be hard to regenerate the original

credit card number from a masking operation such as: 4297 8296 7496 87XX

since the numbers are generated with a specific and well known checksum algorithm.

Also care must be taken not to mask out potentially required information. A masking

operation such as XXXX XXXX XXXX 5379 would strip the card issuer details

from the credit card number. This may, or may not, be desirable.

If the data is in a specific, invariable format, then Masking Out is a powerful and fast

option. If numerous special cases must be dealt with then masking can be slow,

extremely complex to administer and can potentially leave some data items

inappropriately masked.

Row Internal Synchronization

Data is rarely consistently available in a fully normalized format. Consider the

example below in which the FULL_NAME field is composed of data from other

columns in the same row.

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 9 - http://www.DataMasker.com

After the data has been masked, the FIRST_NAME and LAST_NAME columns will have

been changed to other values. For the information to be secure, clearly the

FULL_NAME field must also change. However, it must change to contain values

synchronized with the rest of the data in the row so that the masked data reflects the

denormalized structure of the row. This type of synchronization is called Row-

Internal Synchronization and it is quite distinct from the other two types: Table-

Internal and Table-To-Table Synchronization.

The Row-Internal Synchronization technique updates a field in a row with a

combination of values from the same row. This means that if, after masking, the

FIRST_NAME and LAST_NAME change to Albert and Wilson then (in this example) the

FULL_NAME column should be updated to contain Albert Wilson. Row-Internal

Synchronization is a common requirement and the data scrambling software you

choose should support it.

Table Internal Synchronization

Sometimes the same data appears in multiple rows within the same table. In the

example below, the name Robert Smith appears in the FIRST_NAME and LAST_NAME

columns in multiple rows.

In other words, some of the data items are denormalized because of repetitions in

multiple rows. If the name Robert Smith changes to Albert Wilson after masking, then

the same Robert Smith referenced in other rows must also change to Albert Wilson in

a consistent manner. This requirement is necessary to preserve the relationships

between the data rows and is called Table-Internal Synchronization.

A Table-Internal Synchronization operation will update columns in groups of rows

within a table to contain identical values. This means that every occurrence of Robert

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 10 - http://www.DataMasker.com

Smith in the table will contain Albert Wilson. Good data anonymization software

should provide support for this requirement.

Table-To-Table Synchronization

It is often the case in practical information systems that identical information is

distributed among multiple tables in a denormalized format. For example, an

employee name may be held in several tables. It is desirable (often essential) that if

the name is masked in one column then the other tables in which the information is

held should also be updated with an identical value. This requirement is called Table-

To-Table Synchronization and is the type of synchronization most people think of

when considering a data anonymization process. It should be noted that there are also

two other types of synchronization: Row-Internal and Table-Internal, (see above) and

all three have quite different purposes and functions.

Table-To-Table Synchronization operations are designed to correlate any data

changes made to a table column with columns in other tables. Thus performing Table-

To-Table Synchronization operations requires the knowledge of a join condition

between the two tables. The join condition is used to ensure the appropriate rows are

updated correctly. Also required, is knowledge of the columns in each of the source

and target tables which must be synchronized.

As an example, consider the two tables:

TABLE SOURCE

 COLUMN IDNUM number(10)

 COLUMN NAME varchar(40)

TABLE TARGET

 COLUMN IDNUM number(10)

 COLUMN NAME varchar(40)

Assume the NAME column must be synchronized between the two tables and the join

condition is SOURCE.IDNUM=TARGET.IDNUM. If a Substitution operation is

performed on the SOURCE.NAME column and a subsequent Table-To-Table

Synchronization operation is applied, then each TARGET.NAME column will receive

values identical to the ones in the SOURCE table where the join condition matches.

Important Note: It is important to realize that if there are IDNUM values in the TARGET

table that are not present in the SOURCE table, the Table-To-Table Synchronization

rule will have no effect on those rows. This issue is called a Table-To-Table Skip and

is discussed in detail in the Data Masking Issues section.

Table-To-Table Synchronization is probably the most common synchronization task –

in fact, it is rare that a data scrambling process does not require it. Every data masking

solution should provide support for this operation.

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 11 - http://www.DataMasker.com

Table-To-Table Synchronization On Primary Key

There are some special cases of Table-To-Table Synchronization which deserve their

own discussion. The first is a scenario in which the masked data must be synchronized

between tables and in which the data being masked also forms the join condition

between the tables.

Below is an example of a table (we will refer to this table as the PARENT table) and its

contents prior to any masking operation. Notice how the CUSTOMER_ID field contains

the first 5 letters of the customer name. It might be necessary to mask the

CUSTOMER_ID value in order to ensure the anonymity of the database.

CUSTOMER_ID COMPANY

SMITH000001 ABC Co.

BROWN000002 DEF Ltd.

ARMST000005 HIJ LLC.

WHITE000007 LMN Partners

The problem lies in the fact that the CUSTOMER_ID value is also used in one or more

other tables. The table below illustrates this (we will refer to this as the CHILD table).

CUSTOMER_ID CUSTOMER_NOTES

SMITH000001 Very nice customer.

BROWN000002 Courier always charges extra shipping

ARMST000005 This customer is actually a PO box - take care.

WHITE000007 Has a phobia about dogs - never mention them.

If masking operations change the CUSTOMER_ID for SMITH000001 to JONES000099

in the PARENT table, then the SMITH000001 value in the CHILD table must also

change to JONES000099. Such synchronization would normally be implemented with

a standard Table-To-Table Synchronization operation except for the fact that the

CUSTOMER_ID value is the join relationship between the two tables. The instant the

CUSTOMER_ID in the PARENT table is masked to some other value, the relationship is

destroyed and the CHILD table rows can no longer be associated with their original

PARENT rows. The two CUSTOMER_ID values are no longer equal and the join

condition no longer exists.

Any data anonymization solution which is implemented should be able to handle the

special case requirement of Table-To-Table masking on join key without much

manual intervention.

Table-To-Table Synchronization Via Third Table

The second special case in Table-To-Table Synchronization operations is a scenario in

which the two tables have no direct join relationship. In other words, the data columns

must be synchronized between the two tables but the equivalent rows must be

identified by a join made through a third table.

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 12 - http://www.DataMasker.com

Below is an example of a situation in which the LASTNAME data in the CUSTOMER_B

table is identical to that in the LASTNAME column of the CUSTOMER_A table. The table

CUST_JT is the join table which describes how the rows in the two tables are related.

In the above diagram, the rows in the CUSTOMER_B table are not directly related to the

rows in the CUSTOMER_A table. Equivalent rows in the CUSTOMER_A and

CUSTOMER_B tables are identified by joining through the CUST_JT table.

If masking operations change the LASTNAME in the CUSTOMER_A table, then table-to-

table synchronization operations which update the equivalent rows in the

CUSTOMER_B table to contain identical values will need to be performed.

This requirement is much less common than the other synchronization techniques

(discussed above) but it is advisable to be aware that it may exist. There are a variety

of ways of performing this operation – the authors of this paper have issued a generic

technical note on the subject.

Synchronizing Between Different Datatypes

In many cases, a set of data will contain the same data entity in multiple locations but

this data will be stored in different formats. For example, a CUSTOMER_ID field might

have a datatype of VARCHAR in one table and INTEGER in another. If this is the

case, problems can arise from two sources: if the values from one column are

substituted into the other as part of a synchronization operation or if the columns are

used as join keys in order to synchronize other data.

Taking the first case in which the values from one column are copied to another, it can

be seen that problems can arise both from the fact that a conversion operation needs to

be performed before the update is possible and also from the fact that the source

column might contain data unsuitable for conversion. In the above example, the

synchronization routines would need to be able to convert numbers stored as

characters into integer values in order to update that column. In some situations this

conversion will be done automatically by the database and in some cases it needs to

be explicitly specified by the designer of the masking routines. If there is a, perhaps

erroneous, CUSTOMER_ID value of “!0001a” in the source table it will not be

possible to cast this value to an integer. In this event, the designer of the masking

operations will need to be aware that this event will happen and implement a handler

for that special case.

CUSTOMER_A

 A_ID LASTNAME

 1 1111111

 2 2222222

 3 3333333

 4 4444444

 5 5555555

 6 6666666

CUST_JT

 A_ID B_ID

 1 A

 2 B

 3 C

 4 D

 5 E

 6 F

CUSTOMER_B

 A_ID LASTNAME

 A 1111111

 B 2222222

 C 3333333

 D 4444444

 E 5555555

 F 6666666

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 13 - http://www.DataMasker.com

If the data items are used as join keys for other columns, then the issue of equivalency

detection presents itself. For example, if a column of last names in two tables is to be

synchronized and the rows are related by a CUSTOMER_ID which is a VARCHAR in

one table and an INTEGER in another then the update statement must be able to cope

with this. In effect, it must be able to detect that a value of “10001” as a character

string is the same thing as the number 10001. This is not super difficult in theory –

however the data masking system implemented must be prepared to cope with it. If

the amount of data to be compared is large then the efficiency of this comparison also

plays a major factor in the execution time of the masking operation.

Cross Schema Synchronization

Many databases contain de-normalized data in tables which are located in multiple

schemas. If this data is related, a Table-To-Table Synchronization operation may be

required after the data masking operations have concluded. The analysis phase

conducted before the construction of the masking routines should pay attention to this

requirement and the masking software should be able to support it if required.

Cross Database Synchronization

Similar to the requirement for Cross Schema Synchronization is the requirement for

Cross Database Synchronization. In this particular scenario the databases are co-

located in the same server but the masked data is located in separate databases (and

also schemas). If this requirement exists, the analysis phase should carefully plan for

it and the database software should be able to support such a synchronization

operation.

Cross Server Synchronization

As with Cross Schema and Cross Database Synchronization it is sometimes necessary

to synchronize data between platforms. This type of synchronization necessarily

involves the physical movement of the data between distinct environments and hence

presents a certain technical challenge if the data volumes are large. Fundamentally

there are two approaches to the movement of the data: one can use the inter-database

transport mechanisms supplied natively by the database vendor, or the data movement

can be handled and copied by the data masking software. Typically the inter-database

data transportation mechanisms are highly optimised by the database vendor and also

often have advanced functionality such as the ability to create and replicate an entire

table as a single command.

Cross Platform Server Synchronization

The scenario where data must be kept consistent between tables which are located in

physically different servers in databases from different vendors is probably the hardest

type of synchronization operation to perform. Many vendors supply data

transportation compatibility routines which can move the data to and from servers

from other vendors. If this type of synchronization is required, then the data masking

software must have the ability to support the use of these routines or have the ability

to perform the cross platform copy operation itself.

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 14 - http://www.DataMasker.com

Selective Masking: Ability to Apply a WHERE Clause

It is essential to be able to use specific criteria to choose the rows on which the

masking operations are performed. In effect, this means that it must be possible to

apply a Where Clause to a set of data and have the masking operations apply only to

that subset of the table. As an example of a Where Clause requirement, consider a

masking operation on a column containing first names. These names are gender

specific and the end users of the database may well require Male and Female names to

be present in the appropriate rows after the masking operations complete. Two rules,

each with a Where Clause based on the gender column will be required here. There is

a potential trap here – note the discussion entitled Where Clause Skips in the Data

Masking Issues section of this document.

Selective Masking: Ability to Apply Sampling

It is often useful to be able to have the ability to apply masking operations to a sample

of the data in a table. For example, a column of surnames might be masked using a

large dataset of surnames. In reality, some names are much more common than others.

In order to ensure that enough duplicate names are present and the masked data better

represents reality, it may be desirable to apply a subsequent masking rule to 10 or 20

percent of the rows in the table using a small dataset of common last names.

If sampling is used, it is important that a sophisticated sampling algorithm is used. If

25 percent of a table is to be masked then it is usually undesirable to mask only the

top quarter of the rows in the table or exactly every fourth row. The sampled rows

should be retrieved randomly from the entire contents of the table.

User Defined SQL Commands

It is very helpful, essential in many circumstances, to be able to run user defined SQL

statements. Such statements could be used, for example, to create an index which

speeds up the operation of other rules or to assist with a complex synchronization

operation.

Note that many databases use different internal mechanisms for the creation and

execution of a block of statements (i.e. a procedure) than they do for simple SQL

statements. It is usually important that the solution chosen be able to support both

block SQL constructs as well as simple insert, update and delete statements.

Flat File Masking

Flat files of data are not as common as they used to be – however they still exist. If

your organization still uses flat files (perhaps for data transfer) and they actually

require anonymization, then support for masking operations on those files will be

needed in your masking solution.

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 15 - http://www.DataMasker.com

Multi-threading and Internal Scheduling

Rule Parallelism

Many databases contain extremely large tables. If hundreds of millions of rows must

be masked, the anonymization operations can take a considerable amount of time.

For large databases it is very useful to be able to run multiple masking operations

simultaneously. Fundamentally there are two approaches to the parallelization

requirement. In the first approach masking operations are executed in parallel but only

against distinct tables. In other words, no table can have simultaneous masking

operations applied to it. This approach solves a number of the locking issues which

can occur when large updates are applied to the same table – however in many

databases there are relatively few large tables and hence little opportunity to run the

masking operations in parallel. The second, more sophisticated, approach permits

multiple simultaneous data anonymization operations against the same table but these

operations are designed to work with the database locking mechanism in such a way

that lock collisions either do not occur or are resolved transparently without any

operator intervention.

Sequences Within the Parallel Runs

Not all rules can execute simultaneously – either within the same table or on different

tables. As an example consider a simple masking operation involving Row Internal

Synchronization. This type of synchronization is discussed in detail in the Data

Masking Techniques section. In the example below if the FIRST_NAME column and

LAST_NAME column are masked then the FULL_NAME column must be rebuilt from

the masked data.

The issue here is that the operations which mask the FIRST_NAME and LAST_NAME

columns are independent and can operate in parallel. However the operation which

performs the synchronization must not begin until both the FIRST_NAME and

LAST_NAME column in each row have been masked. If it synchronizes the data too

soon, then the FULL_NAME column will be updated with one or more unmasked data

values. It is very important that if parallelization operations are enabled that the

software performing the masking has the capability to schedule its masking operations

based on the completion status of other operations. It is also very important for the

designer of the masking operations to be aware of this requirement and to properly

configure the software for this purpose.

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 16 - http://www.DataMasker.com

Data Masking Issues

Where Clause Skips

When conducting masking operations be careful how the data to be sanitized is

selected with WHERE clauses. It is easy, by making assumptions about the content of

data in the row, to leave data in some rows in its original state. As an example,

consider a table with a FIRST_NAME column and a GENDER column. Don’t replace all

the FIRST_NAME fields where GENDER=’M’ with male first names and the

FIRST_NAME fields where GENDER=’F’ with female first names unless you are

absolutely sure that the GENDER column can contain only ‘M’ or ‘F’. It is entirely

possible that the GENDER field may contain some other character (including null).

Masking only the ‘M’ and ‘F’ GENDER fields will leave the FIRST_NAME field in

some rows unmasked. It is far better to mask all rows with one option (Male First

Names for example) and then go through a second time to mask every FIRST_NAME

fields where GENDER=’F’ with female first names. This ensures that all rows have

some sort of masking operation applied – irregardless of the state of the GENDER field.

Where Clause Skips can lead to some quite insidious omissions – be sure to use full

coverage to ensure every record gets masked.

Table-To-Table Skips

One of the most common synchronization operations is Table-To-Table

Synchronization. This technique is discussed in detail in the Data Masking

Techniques section. The synchronization technique uses a set of join columns to

determine which rows are related to each other and then the masked data is copied

from the source table to the target table so that the rows are updated appropriately.

The problem with this approach is that if there are rows in the target table which have

join keys which are not in the source table then those rows will not get updated as part

of the synchronization process. As an example, consider the two tables below.

 CUSTOMER CUSTOMER_NOTES

CustID, CustName CustID, CustName

 100 Smith 100 Smith

 200 Jones 200 Jones

 300 Miller 3001 Miller

After the masking operations complete on the CUSTOMER table CustName column

these changes must be replicated to the denormalized CustName in the

CUSTOMER_NOTES table. The problem is that there was a typo in the data entry

process and the CustID of 300 is actually entered as 3001. If a simple Table-To-

Table synchronization operation is performed the value of “Miller” in the

CUSTOMER_NOTES table will not be updated and will still be present in its unmasked

form. This is called a Table-To-Table Skip. The best way to avoid this issue is to

mask all of the CustName column contents in the CUSTOMER_NOTES table with a

simple value like “ABCD” and then perform the synchronization. If that is done, then

no data will be left in its unmasked form.

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 17 - http://www.DataMasker.com

Cleaning up the Data

Data Masking operations are designed (by necessity) to update the data in the target

database with values that are benign. One issue to be aware of, particularly if

Substitution techniques are used, is that the act of masking the data can remove

special cases from the data. For example, if a dataset of pre-prepared last names does

not contain any names with umlaut characters (ä, ë, ï, ü) and the existing data does

contain them, then such characters will not be present after the masking operation is

complete.

Sometimes this “cleaning effect” matters and sometimes it does not. It is important

that the person designing the masking routines be aware of the possibility. There are a

number of ways of countering this effect. An appropriate choice of dataset or the use

of a Shuffling technique are two possibilities.

Isolated Case Phenomena

The end result of the sanitization on the test and development database is to preserve

the privacy of the individual records. In general, anonymity is derived from the

presence of a large number of similar records. If a record stands out in any way it

could be attributable to an individual. For example, could the record for the

organizational CEO be determined by finding the largest salary in the table?

Sometimes each record is its own special case. In a small enough organization an

unmasked birth date could readily be attributable to a specific individual.

Whether this issue is important depends the intended use of the data and also on how

the remainder of the information is masked. For example, perhaps it does not matter if

a specific record is known to be associated with the CEO as long as the name, contact

details and salary are masked.

Relevant Data

In test systems, most data will eventually appear on a front end screen and be visible

to the end user in one form or another. To be useful, the sanitised values must

resemble the look-and-feel of the original information. For example, surnames should

be replaced with random surnames. Usually it is not acceptable to the end users of the

system if random collections of meaningless text are used.

Intelligent Keys

It often happens that data items have a structure which represents an internal meaning.

An example of this is the checksum on a credit card number. It is undesirable to

sanitise such data by replacing it with a random collection of digits. The problem

arises in the front end screens – they check the content prior to update. Hence if the

data value is not right according to its internal design, any screen which displays the

value will never permit an update because the validity checks fail. Intelligent Keys are

commonly found in such things as employee numbers, credit card numbers and ID

numbers.

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 18 - http://www.DataMasker.com

There are two ways to resolve this issue – either generate data items that meet the

validity standard or shuffle the data in the column among the rows so that no row

contains its original data but each data item is valid internally. It is a matter of

judgement whether shuffling the column data among the rows provides sufficient

sanitization for the data.

Free Format Data

Textual data such as letters, memos, disciplinary notes etc are practically impossible

to sanitize in-situ. Unless the masking algorithms are extremely clever, or the format

of the text is fixed it is probable that some information will be missed during the

sanitization process. For example, no matter how elaborate an algorithm you develop

to sanitize names in a table containing disciplinary letters you will always be

vulnerable to an unknown nickname, or descriptive epithet being left unmasked.

The usual way of dealing with free format data is to replace all values with randomly

generated meaningless text (or simply null them) and then update certain selected data

items with carefully hand sanitized examples. This will give the users of the test

system some realistic looking information to work on while preserving anonymity in

the remainder. This particular technique works because most test, training and dev

teams have certain favourite records which they use for various purposes. For

example it is usually not much trouble to find out which records a training team use

when demonstrating a letter of commendation and ensure that a carefully hand

sanitized version is available there. The remaining records can be random gibberish

(or null) and it will not matter.

Field Overflow

Care must be taken when replacing the real data with false test data to avoid

overflowing previously allocated storage capacity. For example, if a field being

masked is 20 characters in size then no items of greater length can be used as

replacement data otherwise errors will be generated and the process will fail.

Sparse Data

Not all columns in a table have data in all rows. For example, the

PREVIOUS_LAST_NAME field in an EMPLOYEE table will probably be mostly empty.

In this case, when masking the data, it is not appropriate to fill in every

PREVIOUS_LAST_NAME – the majority must remain null. If data is added where none

was previously present, then the size of the table massively expands, there can be

serious issues regarding storage and row chaining and, perhaps most importantly, the

masked data does not actually reflect the original values.

Percentage Operations

The Sparse Data issue above highlighted the point that not every column in a table

might necessarily have data. The column sparseness can be preserved by masking the

not null values. However, it might be desirable to assign the PREVIOUS_LAST_NAME

values randomly thus removing the association of actually having had a previous

surname from any specific row. In cases like this, it is useful to be able to null

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 19 - http://www.DataMasker.com

everything and then randomly update just a specified percentage of the rows with the

appropriate contents.

Sequence Generation.

Occasionally data masking operations require sequences of values to be generated.

For example, if a CUSTOMER_ID value is being masked, it might be desirable to have

the new values be generated in a sequence such as ABC10001, ABC1002, ABC1003

etc. The ability of the masking routines to generate sequences of data is sometimes

quite useful.

Consistent Masking

Often the end users of the masked database require the identical values to be

substituted in the same fields each time a newly masked database is created. For

example, if customer 10001 has a masked name of “John Smith” the first time

they see it they may well require that record to have the name “John Smith” every

time a newly masked database is given to them. Training teams, who generally have a

standard set of actions to perform, particularly seem to need this. It pays to be aware

of this requirement and, if required, ensure the data masking routines which are

implemented can support this.

Aggregate Information

Sometimes even if information is not attributable to a specific individual, the

collection of information might well be sensitive. For example, salary figures may be

anonymous because the associated employee names have been masked, but does it

matter if someone can add up the salary figures for a department? An awareness of the

aggregate values of collections of information present in the database is a

consideration when deciding on which masking operations to perform on a database.

Meta Information

It is not only the data in the database tables which may need to be rendered

anonymous. What if the structure of the database itself is sensitive? For example, if

there is a table in the database entitled PROJECT_XYZ_NOTES then this is a sure

indicator that a project named XYZ exists and this visibility may not be desirable. The

presence of such “information about information” is a judgement which has to be

made when designing a set of masking operations.

Granularity

Is it necessary to sanitize absolutely everything? Or is masking enough data to prevent

attribution sufficient. For example, do job titles have to be masked? Perhaps just

removing a few examples of the Isolated Case Phenomena is sufficient. Either way,

decisions have to be made as to the depth of cleansing required. Any sanitization

process trades thoroughness for complexity and time – the deeper operations the

harder and longer it takes to maintain synchronization. This issue is discussed in detail

in the What to Mask section of this paper.

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 20 - http://www.DataMasker.com

Distribution Preservation

In many cases the distribution of the data (numbers and dates) is important. For

example, if salary figures are randomly updated, the random number generator will

almost certainly give an even distribution between the specified ranges rather than the

usual pyramid of lots of small salaries and fewer larger ones. Whether the skewing of

the data matters is an implementation decision. If the data distribution is important

then the Number and Date Variance techniques previously discussed are the tool to

use.

Special Cases

Most masking operations sweep with a broad brush and tend to obliterate special

cases. For example, if there are only a few examples of an employee that has quit and

then been rehired it may well prove to be the case that they received the same

PERSON_ID but a different EMPLOYEE_NUMBER when hired the second time. The

Table-Internal Synchronization operations may well remove this special case.

Whether this homogenisation of the information is important is a decision for each

implementation – however it is useful to realize that the issue exists. Note that this

issue is not quite the same thing as discussed in the Cleaning Up The Data issue. This

particular case is much more about special data relationships which might need to be

preserved after masking rather than the specific content of the data items.

User Defined Fields

Many vendors of pre-prepared software packages assume (quite rightly) that every

site will have custom requirements for the storage of information and implement user

defined fields for this purpose. These fields store site specific information and their

usage varies widely between implementations. A thorough analysis of the user

defined field contents will always be required in order to ensure the data is completely

scrubbed clean of personal details.

Speed

Some of the tables are big. One has to be careful how the masking operation is

performed otherwise it will take an inordinate amount of time to complete. For

example, it is not possible to perform Table-To-Table Data Synchronization directly

on an un-indexed column in a large table. The process just never finishes.

That is not to say it is impossible to do – it may be necessary to build indexes on-the-

fly specifically for the purposes of synchronizing the masked data. Alternatively,

speed improvements can often be achieved by dropping certain indexes, triggers and

foreign keys for the duration of the masking operations. The data masking routines

should be able to perform these operations. Also, and it is just as important, once the

masking operations are complete the data anonymization routines must be able to

remove any temporary indexes which were built and then rebuild any indexes, foreign

keys and triggers that were dropped.

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 21 - http://www.DataMasker.com

Repeatability

It is probable that any sanitization operations performed on a test system will need to

be reproduced many times in the future as each new test instance is cloned. Make sure

the masking process is designed to be simple and repeatable. It is usually reasonable

to expect to take a bit of time developing a set of masking operations. However, once

they are built it is very desirable to be able to initiate those routines with little or no

operator intervention. Costs quickly add up if the masking process causes a team of

people to have to work over a weekend or delay the availability of test or development

databases.

Data Masking: What You Need to Know A Net 2000 Ltd. White Paper

 Copyright © Net 2000 Ltd. 2016 - 22 - http://www.DataMasker.com

Summary

Given the legal and organizational operating environment of today, many test and

development databases will require some form of sanitization in order to render the

informational content anonymous. As was discussed in this paper, there are a variety

of techniques available, and the process of data masking has an even larger number of

traps waiting for the unwary. It is important when sanitizing data in test systems that a

thorough analysis of the requirements be performed. Very often there are a

considerable number of trade-offs which must be made. Some questions you may

wish to consider as part of your analysis process are:

 Who will be the end users of the masked data? Is it possible that different

levels of masking will be needed for different groups of end users?

 What sort of depth of masking (granularity) of the anonymous data will be

required in the resulting databases? For example, if all of the other Personally

Identifying Information (PII) is removed is it actually necessary to render the

CUSTOMER_ID number field anonymous?

 How large is the data to be masked? If there are many rows of data it might be

necessary to scale back the amount of masking and synchronization operations

just so that it is possible to perform the masking operations in a reasonable

amount of time.

 Is there a time window during which the masking operations must be

completed? An example of this would be that the masking operations have to

fit into the time window available for a clone and backup cycle.

 Which data should be masked and in which tables and columns are these data

items located?

 What masking techniques will be used on the various datatypes?

 Are the data items to be masked involved in any relationships with other data

items? In particular look for foreign keys or logical relationships to other

tables. However, also consider the possibility of Row-Internal or Table-

Internal Synchronization requirements. Are there Cross Datatype, Cross

Schema, Cross Database or Cross Platform synchronization issues involved in

the masking operation?

 Are there any of the data masking issues (discussed above) applicable to the

anonymization operations? In particular look for the Isolated Case

Phenomena, the Where Clause Skip and the Table-To-Table Skip data

masking traps.

Good luck with your data masking! We hope this whitepaper will provide you with

some useful topics to consider. If you have any questions about the contents of this

paper or data masking in general please do get in touch with us. We are happy to

provide advice and assistance.

